3.317 \(\int \frac{x}{(8 c-d x^3) \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=141 \[ -\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt{c+d x^3}}\right )}{6 \sqrt{3} c^{5/6} d^{2/3}}+\frac{\tanh ^{-1}\left (\frac{\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt{c+d x^3}}\right )}{18 c^{5/6} d^{2/3}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{18 c^{5/6} d^{2/3}} \]

[Out]

-ArcTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]]/(6*Sqrt[3]*c^(5/6)*d^(2/3)) + ArcTanh[(c^(1/3
) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])]/(18*c^(5/6)*d^(2/3)) - ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]/(18*
c^(5/6)*d^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.413438, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {486, 444, 63, 206, 2138, 2145, 205} \[ -\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt{c+d x^3}}\right )}{6 \sqrt{3} c^{5/6} d^{2/3}}+\frac{\tanh ^{-1}\left (\frac{\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt{c+d x^3}}\right )}{18 c^{5/6} d^{2/3}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{18 c^{5/6} d^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[x/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

-ArcTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]]/(6*Sqrt[3]*c^(5/6)*d^(2/3)) + ArcTanh[(c^(1/3
) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])]/(18*c^(5/6)*d^(2/3)) - ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]/(18*
c^(5/6)*d^(2/3))

Rule 486

Int[(x_)/(((a_) + (b_.)*(x_)^3)*Sqrt[(c_) + (d_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[d/c, 3]}, Dist[(d*q)/(4*
b), Int[x^2/((8*c - d*x^3)*Sqrt[c + d*x^3]), x], x] + (-Dist[q^2/(12*b), Int[(1 + q*x)/((2 - q*x)*Sqrt[c + d*x
^3]), x], x] + Dist[1/(12*b*c), Int[(2*c*q^2 - 2*d*x - d*q*x^2)/((4 + 2*q*x + q^2*x^2)*Sqrt[c + d*x^3]), x], x
])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[8*b*c + a*d, 0]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2138

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(-2*e)/d, Subst[Int
[1/(9 - a*x^2), x], x, (1 + (f*x)/e)^2/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
0] && EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 2145

Int[((f_) + (g_.)*(x_) + (h_.)*(x_)^2)/(((c_) + (d_.)*(x_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbo
l] :> Dist[-2*g*h, Subst[Int[1/(2*e*h - (b*d*f - 2*a*e*h)*x^2), x], x, (1 + (2*h*x)/g)/Sqrt[a + b*x^3]], x] /;
 FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b*d*f - 2*a*e*h, 0] && EqQ[b*g^3 - 8*a*h^3, 0] && EqQ[g^2 + 2*f*h,
0] && EqQ[b*d*f + b*c*g - 4*a*e*h, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x}{\left (8 c-d x^3\right ) \sqrt{c+d x^3}} \, dx &=-\frac{\int \frac{2 \sqrt [3]{c} d^{2/3}-2 d x-\frac{d^{4/3} x^2}{\sqrt [3]{c}}}{\left (4+\frac{2 \sqrt [3]{d} x}{\sqrt [3]{c}}+\frac{d^{2/3} x^2}{c^{2/3}}\right ) \sqrt{c+d x^3}} \, dx}{12 c d}+\frac{\int \frac{1+\frac{\sqrt [3]{d} x}{\sqrt [3]{c}}}{\left (2-\frac{\sqrt [3]{d} x}{\sqrt [3]{c}}\right ) \sqrt{c+d x^3}} \, dx}{12 c^{2/3} \sqrt [3]{d}}-\frac{\sqrt [3]{d} \int \frac{x^2}{\left (8 c-d x^3\right ) \sqrt{c+d x^3}} \, dx}{4 \sqrt [3]{c}}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{9-c x^2} \, dx,x,\frac{\left (1+\frac{\sqrt [3]{d} x}{\sqrt [3]{c}}\right )^2}{\sqrt{c+d x^3}}\right )}{6 \sqrt [3]{c} d^{2/3}}-\frac{\sqrt [3]{d} \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{12 \sqrt [3]{c}}+\frac{d^{4/3} \operatorname{Subst}\left (\int \frac{1}{-\frac{2 d^2}{c}-6 d^2 x^2} \, dx,x,\frac{1+\frac{\sqrt [3]{d} x}{\sqrt [3]{c}}}{\sqrt{c+d x^3}}\right )}{3 c^{4/3}}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt{c+d x^3}}\right )}{6 \sqrt{3} c^{5/6} d^{2/3}}+\frac{\tanh ^{-1}\left (\frac{\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt{c+d x^3}}\right )}{18 c^{5/6} d^{2/3}}-\frac{\operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{6 \sqrt [3]{c} d^{2/3}}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt{c+d x^3}}\right )}{6 \sqrt{3} c^{5/6} d^{2/3}}+\frac{\tanh ^{-1}\left (\frac{\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt{c+d x^3}}\right )}{18 c^{5/6} d^{2/3}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{18 c^{5/6} d^{2/3}}\\ \end{align*}

Mathematica [C]  time = 0.026365, size = 67, normalized size = 0.48 \[ \frac{x^2 \sqrt{\frac{c+d x^3}{c}} F_1\left (\frac{2}{3};\frac{1}{2},1;\frac{5}{3};-\frac{d x^3}{c},\frac{d x^3}{8 c}\right )}{16 c \sqrt{c+d x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(x^2*Sqrt[(c + d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)])/(16*c*Sqrt[c + d*x^3])

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 416, normalized size = 3. \begin{align*}{\frac{-{\frac{i}{27}}\sqrt{2}}{{d}^{3}c}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\frac{1}{{\it \_alpha}}\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x)

[Out]

-1/27*I/d^3/c*2^(1/2)*sum(1/_alpha*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3))
)/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*
d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*
_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/
3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(
2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*
c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootO
f(_Z^3*d-8*c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x}{\sqrt{d x^{3} + c}{\left (d x^{3} - 8 \, c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

-integrate(x/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)), x)

________________________________________________________________________________________

Fricas [B]  time = 9.37557, size = 5659, normalized size = 40.13 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

-1/54*sqrt(3)*(1/(c^5*d^4))^(1/6)*arctan(1/9*((9*sqrt(3)*c*d^2*x^5*(1/(c^5*d^4))^(1/6) - sqrt(3)*(c^4*d^5*x^6
- 40*c^5*d^4*x^3 - 32*c^6*d^3)*(1/(c^5*d^4))^(5/6) + 3*sqrt(3)*(5*c^3*d^3*x^4 + 8*c^4*d^2*x)*sqrt(1/(c^5*d^4))
)*sqrt(d*x^3 + c) + (18*sqrt(3)*(c^4*d^4*x^5 + c^5*d^3*x^2)*(1/(c^5*d^4))^(2/3) + 12*sqrt(3)*(c^2*d^3*x^6 - c^
3*d^2*x^3 - 2*c^4*d)*(1/(c^5*d^4))^(1/3) + 3*sqrt(3)*(d^2*x^7 + 5*c*d*x^4 + 4*c^2*x) + sqrt(d*x^3 + c)*(sqrt(3
)*(c^4*d^5*x^6 + 32*c^5*d^4*x^3 + 40*c^6*d^3)*(1/(c^5*d^4))^(5/6) + 3*sqrt(3)*(7*c^3*d^3*x^4 + 4*c^4*d^2*x)*sq
rt(1/(c^5*d^4)) + 9*sqrt(3)*(c*d^2*x^5 + 2*c^2*d*x^2)*(1/(c^5*d^4))^(1/6)))*sqrt((d^3*x^9 - 276*c*d^2*x^6 - 16
08*c^2*d*x^3 - 1088*c^3 - 18*(c^4*d^5*x^7 - 52*c^5*d^4*x^4 - 80*c^6*d^3*x)*(1/(c^5*d^4))^(2/3) + 6*sqrt(d*x^3
+ c)*(24*(c^5*d^5*x^5 + c^6*d^4*x^2)*(1/(c^5*d^4))^(5/6) - 4*(c^3*d^4*x^6 + 41*c^4*d^3*x^3 + 40*c^5*d^2)*sqrt(
1/(c^5*d^4)) - (c*d^3*x^7 - 28*c^2*d^2*x^4 - 272*c^3*d*x)*(1/(c^5*d^4))^(1/6)) + 18*(c^2*d^4*x^8 + 20*c^3*d^3*
x^5 - 8*c^4*d^2*x^2)*(1/(c^5*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)))/(d^2*x^7 - 7*c*
d*x^4 - 8*c^2*x)) - 1/54*sqrt(3)*(1/(c^5*d^4))^(1/6)*arctan(1/9*((9*sqrt(3)*c*d^2*x^5*(1/(c^5*d^4))^(1/6) - sq
rt(3)*(c^4*d^5*x^6 - 40*c^5*d^4*x^3 - 32*c^6*d^3)*(1/(c^5*d^4))^(5/6) + 3*sqrt(3)*(5*c^3*d^3*x^4 + 8*c^4*d^2*x
)*sqrt(1/(c^5*d^4)))*sqrt(d*x^3 + c) - (18*sqrt(3)*(c^4*d^4*x^5 + c^5*d^3*x^2)*(1/(c^5*d^4))^(2/3) + 12*sqrt(3
)*(c^2*d^3*x^6 - c^3*d^2*x^3 - 2*c^4*d)*(1/(c^5*d^4))^(1/3) + 3*sqrt(3)*(d^2*x^7 + 5*c*d*x^4 + 4*c^2*x) - sqrt
(d*x^3 + c)*(sqrt(3)*(c^4*d^5*x^6 + 32*c^5*d^4*x^3 + 40*c^6*d^3)*(1/(c^5*d^4))^(5/6) + 3*sqrt(3)*(7*c^3*d^3*x^
4 + 4*c^4*d^2*x)*sqrt(1/(c^5*d^4)) + 9*sqrt(3)*(c*d^2*x^5 + 2*c^2*d*x^2)*(1/(c^5*d^4))^(1/6)))*sqrt((d^3*x^9 -
 276*c*d^2*x^6 - 1608*c^2*d*x^3 - 1088*c^3 - 18*(c^4*d^5*x^7 - 52*c^5*d^4*x^4 - 80*c^6*d^3*x)*(1/(c^5*d^4))^(2
/3) - 6*sqrt(d*x^3 + c)*(24*(c^5*d^5*x^5 + c^6*d^4*x^2)*(1/(c^5*d^4))^(5/6) - 4*(c^3*d^4*x^6 + 41*c^4*d^3*x^3
+ 40*c^5*d^2)*sqrt(1/(c^5*d^4)) - (c*d^3*x^7 - 28*c^2*d^2*x^4 - 272*c^3*d*x)*(1/(c^5*d^4))^(1/6)) + 18*(c^2*d^
4*x^8 + 20*c^3*d^3*x^5 - 8*c^4*d^2*x^2)*(1/(c^5*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3
)))/(d^2*x^7 - 7*c*d*x^4 - 8*c^2*x)) + 1/108*(1/(c^5*d^4))^(1/6)*log((d^3*x^9 + 318*c*d^2*x^6 + 1200*c^2*d*x^3
 + 640*c^3 + 18*(5*c^4*d^5*x^7 + 64*c^5*d^4*x^4 + 32*c^6*d^3*x)*(1/(c^5*d^4))^(2/3) + 6*sqrt(d*x^3 + c)*(6*(5*
c^5*d^5*x^5 + 32*c^6*d^4*x^2)*(1/(c^5*d^4))^(5/6) + (7*c^3*d^4*x^6 + 152*c^4*d^3*x^3 + 64*c^5*d^2)*sqrt(1/(c^5
*d^4)) + (c*d^3*x^7 + 80*c^2*d^2*x^4 + 160*c^3*d*x)*(1/(c^5*d^4))^(1/6)) + 18*(c^2*d^4*x^8 + 38*c^3*d^3*x^5 +
64*c^4*d^2*x^2)*(1/(c^5*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 1/108*(1/(c^5*d^4))
^(1/6)*log((d^3*x^9 + 318*c*d^2*x^6 + 1200*c^2*d*x^3 + 640*c^3 + 18*(5*c^4*d^5*x^7 + 64*c^5*d^4*x^4 + 32*c^6*d
^3*x)*(1/(c^5*d^4))^(2/3) - 6*sqrt(d*x^3 + c)*(6*(5*c^5*d^5*x^5 + 32*c^6*d^4*x^2)*(1/(c^5*d^4))^(5/6) + (7*c^3
*d^4*x^6 + 152*c^4*d^3*x^3 + 64*c^5*d^2)*sqrt(1/(c^5*d^4)) + (c*d^3*x^7 + 80*c^2*d^2*x^4 + 160*c^3*d*x)*(1/(c^
5*d^4))^(1/6)) + 18*(c^2*d^4*x^8 + 38*c^3*d^3*x^5 + 64*c^4*d^2*x^2)*(1/(c^5*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x
^6 + 192*c^2*d*x^3 - 512*c^3)) - 1/216*(1/(c^5*d^4))^(1/6)*log((d^3*x^9 - 276*c*d^2*x^6 - 1608*c^2*d*x^3 - 108
8*c^3 - 18*(c^4*d^5*x^7 - 52*c^5*d^4*x^4 - 80*c^6*d^3*x)*(1/(c^5*d^4))^(2/3) + 6*sqrt(d*x^3 + c)*(24*(c^5*d^5*
x^5 + c^6*d^4*x^2)*(1/(c^5*d^4))^(5/6) - 4*(c^3*d^4*x^6 + 41*c^4*d^3*x^3 + 40*c^5*d^2)*sqrt(1/(c^5*d^4)) - (c*
d^3*x^7 - 28*c^2*d^2*x^4 - 272*c^3*d*x)*(1/(c^5*d^4))^(1/6)) + 18*(c^2*d^4*x^8 + 20*c^3*d^3*x^5 - 8*c^4*d^2*x^
2)*(1/(c^5*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) + 1/216*(1/(c^5*d^4))^(1/6)*log((d
^3*x^9 - 276*c*d^2*x^6 - 1608*c^2*d*x^3 - 1088*c^3 - 18*(c^4*d^5*x^7 - 52*c^5*d^4*x^4 - 80*c^6*d^3*x)*(1/(c^5*
d^4))^(2/3) - 6*sqrt(d*x^3 + c)*(24*(c^5*d^5*x^5 + c^6*d^4*x^2)*(1/(c^5*d^4))^(5/6) - 4*(c^3*d^4*x^6 + 41*c^4*
d^3*x^3 + 40*c^5*d^2)*sqrt(1/(c^5*d^4)) - (c*d^3*x^7 - 28*c^2*d^2*x^4 - 272*c^3*d*x)*(1/(c^5*d^4))^(1/6)) + 18
*(c^2*d^4*x^8 + 20*c^3*d^3*x^5 - 8*c^4*d^2*x^2)*(1/(c^5*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 -
 512*c^3))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{- 8 c \sqrt{c + d x^{3}} + d x^{3} \sqrt{c + d x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)

[Out]

-Integral(x/(-8*c*sqrt(c + d*x**3) + d*x**3*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x}{\sqrt{d x^{3} + c}{\left (d x^{3} - 8 \, c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

integrate(-x/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)), x)